Posthatching developmental changes in noradrenaline content in the chicken pineal gland

J Pineal Res. 2005 Mar;38(2):123-9. doi: 10.1111/j.1600-079X.2004.00182.x.

Abstract

Noradrenaline (NA) levels in pineal gland of chickens at various posthatching stages (P2, P4, P8, P15, P30 and P57) were determined by high-performance liquid chromatography with electrochemical detection. Pineal NA content markedly increased between P2 and P30. P30 and P57 chickens, kept from the day of hatching under a 12:12 hr light-dark (LD) illumination cycle, exhibited rhythmic changes in pineal NA, with levels in the dark period being markedly higher than in the light period. In younger birds pineal NA concentrations did not show pronounced daily variations. In 4-wk-old chickens (P28-30) kept under constant darkness (DD), the rhythmic pattern of pineal NA persisted for 1 day (with higher values during the subjective dark phase than during the subjective light phase), but this disappeared 24 hr after the introduction of DD. In contrast, NA content in pineal glands isolated from birds maintained for 2 days under continuous light was similar to that found during the light phase of the LD cycle, and did not exhibit significant rhythmicity. In P30 chickens, pretreated with alpha-methyl-p-tyrosine (AMPT, an inhibitor of tyrosine hydroxylase, the key regulatory enzyme in the biosynthesis of catecholamines), pineal NA content declined slowly and monophasically during the light phase. During the dark phase the AMPT-induced decay of NA was biphasic--namely an initial rapid decline over the first 15 min which was followed by a slow-rate decline--an observation indicating that NA turnover was higher in the dark. Acute exposure of the dark-adapted P30 and P57 chickens to light significantly decreased pineal NA content, but did not affect pineal NA concentrations in younger birds. Our results suggest that the NA rhythm in the chicken pineal gland and its sensitivity to light regulation progressively develop during the first month of life.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / metabolism*
  • Animals
  • Chickens / metabolism*
  • Circadian Rhythm / physiology
  • Male
  • Norepinephrine / metabolism*
  • Pineal Gland / metabolism*
  • Time Factors

Substances

  • Norepinephrine