Antidiabetic drug thiazolidinedione (TZD) also has anti-atherogenic effects. Among these effects, inhibition of smooth muscle cell (SMC) migration is considered to be essential. However, the mechanism whereby TZD inhibits SMC migration is not well understood. Since it is known that matrix metalloproteinases (MMPs) play a permissive role for SMC migration, we determined if TZD inhibits the upregulation of MMP-1 expression in SMCs by oxidized LDL (oxLDL), a potent stimulator for atherogenesis. Results showed that oxLDL markedly stimulated MMP-1 secretion, mRNA expression, and MMP-1 promoter activity, but pioglitazone significantly inhibited the oxLDL-upregulated MMP-1 expression. In an attempt to explore the signaling mechanism by which pioglitazone inhibits the oxLDL-upregulated MMP-1 expression, we found that extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK) pathways were required for the oxLDL-stimulated MMP-1 expression, but pioglitazone failed to antagonize the activation of ERK and JNK by oxLDL. Finally, our AP-1 activity assay showed that pioglitazone inhibited oxLDL-stimulated c-Jun activity. Taken together, the present study indicates that pioglitazone inhibits oxLDL-stimulated MMP-1 expression in VSMCs by inhibiting c-Jun transcriptional activity through a mitogen-activated protein kinase (MAPK)-independent mechanism.