Here we describe mass spectrometric identification, molecular cloning, and biochemical characterization of a lipid/membrane raft-associated protein that is tyrosine-phosphorylated upon Xenopus egg fertilization. This protein is homologous to mammalian uroplakin III, a member of the uroplakin family proteins (UPs) that constitute asymmetric unit membranes in the mammalian urothelial tissues, thus termed Xenopus uroplakin III (xUPIII). xUPIII contains N-linked sugars and is highly expressed in Xenopus eggs, ovary, urinary tract, and kidney. In unfertilized eggs, xUPIII is predominantly localized to the lipid/membrane rafts and exposed on the cell surface, as judged by surface biotinylation experiments and indirect immunofluorescent studies. After fertilization or hydrogen peroxide-induced egg activation, xUPIII becomes rapidly phosphorylated on tyrosine residue-249, which locates in the carboxyl-terminal cytoplasmic tail of the molecule. Raft localization and tyrosine phosphorylation of xUPIII can be reconstituted in HEK293 cells by coexpression of xUPIII, and Xenopus c-Src, a tyrosine kinase whose fertilization-induced activation in egg rafts is required for initiation of development. In mammals, UPIII is forming a complex with a tetraspanin molecule uroplakin Ib. As another tetraspanin, CD9, is known to be a critical component for sperm-egg fusion in the mouse, we have assumed that xUPIII is involved in sperm-egg interaction. An antibody against the extracellular domain of xUPIII blocks sperm-egg interaction, as judged by the occurrence of egg activation and first cell cleavage. Thus, xUPIII represents an egg raft-associated protein that is likely involved in sperm-egg interaction as well as subsequent Src-dependent intracellular events of egg activation in Xenopus.