Building kernels from binary strings for image matching

IEEE Trans Image Process. 2005 Feb;14(2):169-80. doi: 10.1109/tip.2004.840701.

Abstract

In the statistical learning framework, the use of appropriate kernels may be the key for substantial improvement in solving a given problem. In essence, a kernel is a similarity measure between input points satisfying some mathematical requirements and possibly capturing the domain knowledge. In this paper, we focus on kernels for images: we represent the image information content with binary strings and discuss various bitwise manipulations obtained using logical operators and convolution with nonbinary stencils. In the theoretical contribution of our work, we show that histogram intersection is a Mercer's kernel and we determine the modifications under which a similarity measure based on the notion of Hausdorff distance is also a Mercer's kernel. In both cases, we determine explicitly the mapping from input to feature space. The presented experimental results support the relevance of our analysis for developing effective trainable systems.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Cluster Analysis
  • Computer Graphics
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Information Storage and Retrieval / methods
  • Numerical Analysis, Computer-Assisted
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted*
  • Subtraction Technique*
  • User-Computer Interface