Although vascular bypass grafting remains the mainstay for revascularization for ischemic heart disease and peripheral vascular disease, many patients do not have healthy vessels suitable for harvest. Thus, prosthetic grafts made of synthetic polymers were developed, but their use is limited to high-flow/low-resistance conditions because of poor elasticity, low compliance, and thrombogenicity of their synthetic surfaces. To fill this need, several laboratories have produced in vivo or in vitro tissue-engineered blood vessels using molds or prosthetic or biodegradable scaffolds, but each artificial graft has significant problems. Recently, conduits have been grown in the peritoneal cavity of the same animals in which they will be grafted, ensuring no rejection, in the short time of 2 to 3 weeks. Remodeling occurs after grafting such that the tissue is almost indistinguishable from native vessels. This conduit is derived from cells of bone marrow origin, opening new possibilities in vascular modeling and remodeling.