Tocotrienols, isomers of vitamin E, have been found to possess many health benefits. The present study was designed to determine whether tocotrienol has a direct cardioprotective role. Isolated rat hearts were perfused for 15 min with Krebs-Ringer bicarbonate buffer in the absence or presence of palm tocotrienol derived from the tocotrienol-rich fraction (0.035%) of palm oil (TRF). In another group of studies, the hearts were preperfused for 15 min in the presence of a c-Src inhibitor, 4-amino-5-(4-methylphenyl)-7-(t-butyl)-pyrazolo-3,4-d-pyrimidine (PPI). The hearts were then subjected to 30 min of global ischemia followed by 2 h of reperfusion. As expected, ischemia-reperfusion caused ventricular dysfunction, electrical rhythm disturbances, and increased myocardial infarct size. PPI or TRF could reverse the ischemia-reperfusion-mediated cardiac dysfunction. Ischemia-reperfusion also upregulated c-Src expression and phosphorylation. Although TRF only minimally affected c-Src expression, it significantly inhibited the phosphorylation of c-Src. Ischemia-reperfusion reduced 20S and 26S proteasome activities, an effect prevented by TRF pretreatment. PPI exerted a cardioprotective effect that is not mediated by the proteasome but, rather, through direct inhibition of c-Src. The results of this study support a role for c-Src in postischemic cardiac injury and dysfunction and demonstrate direct cardioprotective effects of TRF. The cardioprotective properties of TRF appear to be due to inhibition of c-Src activation and proteasome stabilization.