Pancreatic-type group I phospholipase A2 (PLA2-I), EC 3.1.1.4, long thought to act as a digestive enzyme, has a specific binding site in several types of tissues and cells and these sites promote PLA2-I-stimulated DNA synthesis. In this study we report a PLA2-I action on the migration of rat embryonic thoracic aorta smooth muscle cells (A7r5). A7r5 cells had a single class of PLA2-I binding site with an equilibrium binding constant (Kd) value of 1.7 nM and a maximum binding capacity (Bmax) of 40,000 sites/cell. The migration activity of PLA2-I for A7r5 cells was examined using modified Boyden chambers. PLA2-I stimulated the migration dose-dependently, and the ED50 value was about 1 nM, which was almost the same as the Kd value for PLA2-I binding. Checkerboard analysis showed that the response of A7r5 cells to PLA2-I was chemokinetic, but not chemotactic. These findings reveal a new aspect of PLA2-I in the modulation of vascular function.