Twenty cross combinations were produced using a complete diallel-mating system with five varieties or lines that differed in fiber properties in Upland cotton to determine the inheritance and breeding merits of superior fiber properties. Evaluations of parents and F1 ' s were conducted in two years. The results showed that fiber length uniformity was greatly affected by environmental factors, whereas the other fiber properties were mainly controlled by genetic factors. There were no significant interaction effect of environment with genotype for fiber strength or length, but there were significant environment interactions with additive and maternal affects for Micronaire, and with the dominance effects for elongation. There were no maternal effect, and additive effects predominated for the all fiber properties. Additive heritability was high for fiber strength and length, 77.6% and 73.2% respectively; for Micronaire, it was 45.2%, while the dominance effect was 11.5%, which was the highest among fiber properties. Micronaire had significant heterosis over mid-parent based on population mean (3.2%), while the other fiber properties showed no heterosis. Therefore, the performance of fiber properties in F1 ' s can be predicted from the average value of both parents. Since the additive heritability of strength, length, and fineness of fiber were high, these traits can be selected in early generations in breeding for high quality fiber properties.