Dendritic cells (DCs) are potent antigen-presenting cells and can induce tumour- or pathogen-specific T cell responses. For adoptive immunotherapy purposes, immature DCs can be generated from adherent monocytes using granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin (IL)-4, and further maturation is usually achieved by incubation with tumour necrosis factor (TNF)-alpha. However, TNF-alpha-stimulated DCs produce low levels of IL-12. In this study, we compared the effects of TNF-alpha, interferon (IFN)-gamma, IL-1beta or IFN-gamma + IL-1beta on the phenotypic and functional maturation of DCs. Our results show that IFN-gamma, but not IL-1beta, augmented the surface expression of CD80, CD83 and CD86 molecules without inducing IL-12 production from DCs. However, IL-1beta, but not IFN-gamma, induced IL-12 p40 production by DCs without enhancing phenotypic maturation. When combined, IFN-gamma + IL-1beta treatment profoundly up-regulated the expression of CD80, CD83, CD86 and major histocompatibility complex (MHC) class II antigens. Furthermore, IFN-gamma + IL-1beta-treated DCs produced larger amounts of IL-12 and induced stronger T cell proliferation and IFN-gamma secretion in primary allogeneic mixed lymphocyte reaction (MLR) than did TNF-alpha-treated DCs. Our results show that IFN-gamma + IL-1beta induced human monocyte-derived DCs to differentiate into Th1-prone mature DCs.