Blood oxygenation level-dependent (BOLD) contrast-based functional magnetic resonance imaging (fMRI) has been widely utilized to detect brain neural activities and great efforts are now stressed on the hemodynamic processes of different brain regions activated by a stimulus. The focus of this paper is the comparison of Gamma and Gaussian dynamic convolution models of the fMRI BOLD response. The convolutions are between the perfusion function of the neural response to a stimulus and a Gaussian or Gamma function. The parameters of the two models are estimated by a nonlinear least-squares optimal algorithm for the fMRI data of eight subjects collected in a visual stimulus experiment. The results show that the Gaussian model is better than the Gamma model in fitting the data. The model parameters are different in the left and right occipital regions, which indicate that the dynamic processes seem different in various cerebral functional regions.