Purpose: Botulinum toxin A (BoNT-A) is used to manage spasticity in cerebral palsy. BoNT-A cleaves SNAP-25 protein, blocking acetylcholine release and weakening the muscle. Nicotinic acetylcholine receptors (nAChR) including alpha, beta, delta, gamma, and epsilon subunits, and GAP-43 protein are associated with functional recovery of neuromuscular junctions (NMJ) following BoNT-A. To better understand the mechanism behind this functional recovery, this study attempted to (1) document changes in NMJ morphometry following BoNT-A, and (2) determine the gene expression of nAChR subunits, SNAP-25, and GAP-43 protein.
Methods: In this rat study (46 rats), 6 units/kg body weight of BoNT-A was injected into the gastrocnimus. NMJ morphometry and the time course of gene expression of nAChR subunits, SNAP-25, and GAP-43 were evaluated up to 1year post-injection.
Results: NMJ morphometry: gutter depth was reduced vs. the control side at two months, and normalizing by 6 months following BoNT. nAChR alpha mRNA and gamma mRNA increased by 3 days, peaked at 7 days and returned to control levels; delta mRNA peaked at 3 days. Epsilon mRNA peaked by 7 days. SNAP-25 mRNA increased from 60 to 90 days, returning to control levels by 6 months. GAP-43 mRNA was unchanged.
Conclusions: Specific nAChR subunit mRNA expression up-regulates and then returns to normal within two weeks, preceding changes in NMJ morphometry. Although GAP-43 participates in nerve sprouting, no increase of GAP-43 mRNA occurred following BoNT-A. Delayed up-regulation of SNAP-25 mRNA might be associated with muscle functional recovery.