Anticarcinogenic effects attributed to polyphenols in fruits may be based on synergistic, additive, or antagonistic interactions of many compounds. In a previous study, it was demonstrated that quercetin and ellagic acid interacted synergistically in the induction of apoptosis in the human leukemia cell line, MOLT-4. To investigate possible cellular mechanisms, this study evaluated whether synergistic effects might be detectable within proapoptotic or antiproliferative signal transduction pathways. We found that quercetin and combinations of quercetin and ellagic acid nonsynergistically increased p53 protein levels. In contrast, ellagic acid potentiated the effects of quercetin for p21(cip1/waf1) protein levels and p53 phosphorylation at serine 15, possibly explaining the synergistic effect observed in apoptosis induction. Phosphorylation of the mitogen-activated protein (MAP) kinases, c-jun N-terminal (JNK)1,2 and p38, was also increased by the combination of ellagic acid and quercetin, whereas quercetin alone induced only p38. We further evaluated whether the generation of reactive oxygen species (ROS) and/or quercetin stability were influenced by interactions of ellagic acid with quercetin. Quercetin increased the generation of ROS, which was neither potentiated nor inhibited by ellagic acid. The stability of intracellular and extracellular quercetin was not influenced by the presence of ellagic acid. In summary, quercetin and ellagic acid combined increase the activation of p53 and p21(cip1/waf1) and the MAP kinases, JNK1,2 and p38, in a more than additive manner, suggesting a mechanism by which quercetin and ellagic acid synergistically induce apoptosis in cancer cells.