Background: Oxidized low-density lipoproteins play key roles in atherosclerosis. Their toxicity is at least in part due to 7-ketocholesterol (7KC), which is a potent inducer of apoptosis. In this study on human promonocytic U937 cells, we determined the effects and the interactions of 7KC with cellular lipids during 7KC-induced apoptosis.
Methods: Morphologic and functional changes were investigated by microscopic and flow cytometric methods after staining with propidium iodide, 3,3'-dihexyloxacarbocyanine iodide, and Hoechst 33342. Cellular lipid content was identified by using filipin to quantify free cholesterol and Nile Red (NR), which emit a yellow or orange-red fluorescence in the presence of neutral and polar lipids, respectively. After staining with NR, interactions of 7KC with cellular lipids were identified by fluorescence resonance energy transfer biphoton spectral imaging confocal microscopy and by subcellular fractionation, gas chromatography, and mass spectrometry.
Results: During 7KC-induced apoptosis the fluorescence from filipin and the ratio of measured (orange-red vs. yellow) fluorescence of NR were enhanced. Spectral analysis of images obtained in biphoton mode and resulting factor images demonstrated the occurrence of fluorescence resonance energy transfer between 7KC and NR and the subsequent colocalization of 7KC and NR. These data were in agreement with biochemical characterization and demonstrated that 7KC and neutral and polar lipids accumulate in NR-stained cytoplasmic structures.
Conclusions: During 7KC-induced apoptosis, 7KC modifies the cellular content of neutral and polar lipids, favors free cholesterol accumulation, and colocalizes with neutral and polar lipids that are inside NR-stained cytoplasmic structures.
Copyright 2005 Wiley-Liss, Inc.