Stress, defined as an acute threat to homeostasis, evokes an adaptive or allostatic response and can have both a short- and long-term influence on the function of the gastrointestinal tract. The enteric nervous system is connected bidirectionally to the brain by parasympathetic and sympathetic pathways forming the brain-gut axis. The neural network of the brain, which generates the stress response, is called the central stress circuitry and includes the paraventricular nucleus of the hypothalamus, amygdala and periaqueductal gray. It receives input from the somatic and visceral afferent pathways and also from the visceral motor cortex including the medial prefrontal, anterior cingulate and insular cortex. The output of this central stress circuit is called the emotional motor system and includes automatic efferents, the hypothalamus-pituitary-adrenal axis and pain modulatory systems. Severe or long-term stress can induce long-term alteration in the stress response (plasticity). Corticotropin releasing factor (CRF) is a key mediator of the central stress response. Two CRF receptor subtypes, R1 and R2, have been described. They mediate increased colonic motor activity and slowed gastric emptying, respectively, in response to stress. Specific CRF receptor antagonists injected into the 0 block these visceral manifestations of stress. Circulating glucocorticoids exert an inhibitory effect on the stress response by receptors located in the medial prefrontal cortex and hippocampus. Many other neurotransmitters and neuroimmunomodulators are being evaluated. Stress increases the intestinal permeability to large antigenic molecules. It can lead to mast cell activation, degranulation and colonic mucin depletion. A reversal of small bowel water and electrolyte absorption occurs in response to stress and is mediated cholinergically. Stress also leads to increased susceptibility to colonic inflammation, which can be adaptively transferred among rats by sensitized CD4(+) lymphocytes. The association between stress and various gastrointestinal diseases, including functional bowel disorders, inflammatory bowel disease, peptic ulcer disease and gastroesophageal reflux disease, is being actively investigated. Attention to the close relation between the brain and gut has opened many therapeutic avenues for the future.