Cidofovir is an antiviral drug with activity against a wide array of DNA viruses including poxvirus. The therapeutic use of cidofovir is marred by a dose-limiting side effect, nephrotoxicity, leading to proximal tubular cell injury and acute renal failure. Treatment with cidofovir requires the routine use of prophylactic measures. A correct knowledge of the cellular and molecular mechanisms of cidofovir toxicity may lead to the development of alternative prophylactic strategies. We recently cared for a patient with irreversible acute renal failure due to cidofovir. Renal biopsy showed tubular cell apoptosis. Cidofovir induced apoptosis in primary cultures of human proximal tubular cells in a temporal (peak apoptosis at 7 days) and concentration (10-40 microg/ml) pattern consistent with that of clinical toxicity. Apoptosis was identified by the presence of hypodiploid cells, by the exposure of annexin V binding sites and by morphological features and was associated with the appearance of active caspase-3 fragments. Cell death was specific as it was also present in a human proximal tubular epithelial cell line (HK-2), but not in a human kidney fibroblast cell line, and was prevented by probenecid. An inhibitor of caspase-3 (DEVD) prevented cidofovir apoptosis. The survival factors present in serum, insulin-like growth factor-1 and hepatocyte growth factor, were also protective. The present data suggest that apoptosis induction is a mechanism contributing to cidofovir nephrotoxicity. The prophylactic administration of factors with survival activity for tubular epithelium should be further explored in cidofovir renal injury.