Objective: To find new potential biomarkers and establish the patterns for the detection of ovarian cancer.
Methods: Sixty one serum samples including 32 ovarian cancer patients and 29 healthy people were detected by surface-enhanced laser desorption/ionization mass spectrometry (SELDI-MS). The protein fingerprint data were analyzed by bioinformatics tools. Ten folds cross-validation support vector machine (SVM) was used to establish the diagnostic pattern.
Results: Five potential biomarkers were found (2085 Da, 5881 Da, 7564 Da, 9422 Da, 6044 Da), combined with which the diagnostic pattern separated the ovarian cancer from the healthy samples with a sensitivity of 96.7%, a specificity of 96.7% and a positive predictive value of 96.7%.
Conclusions: The combination of SELDI with bioinformatics tools could find new biomarkers and establish patterns with high sensitivity and specificity for the detection of ovarian cancer.