We probed the charge transfer interaction between the amine-containing molecules hydrazine, polyaniline, and aminobutyl phosphonic acid and carbon nanotube field effect transistors (CNTFETs). We successfully converted p-type CNTFETs to n-type and drastically improved the device performance in both the ON- and OFF-transistor states, utilizing hydrazine as dopant. We effectively switched the transistor polarity between p- and n- type by accessing different oxidation states of polyaniline. We also demonstrated the flexibility of modulating the threshold voltage (Vth) of a CNTFET by engineering various charge-accepting and -donating groups in the same molecule.