Introduction: Fibrin glues are currently used by surgeons and can facilitate the handling of biomaterials. Combining fibrin glue with calcium phosphate bioceramics gives a mouldable composite that cements the granules into the implantation site. In addition to the mechanical aspect of the composite, it has been suggested that the mixture also promotes wound healing. These human blood derivatives contain natural (aprotinin) or synthetic (tranexamic acid) antifibrinolytic substances. We compared the bioactivity of two composites combining calcium phosphate granules with two different types of fibrin glue, one with aprotinin and the other with tranexamic acid.
Materials and methods: The composite was composed of fibrin glue (Tissucol) and 1 to 2 mm granules of biphasic calcium phosphate granules (MBCP) with a volume ratio of 1 for 2. Bone cavities were drilled in 12 New Zealand rabbits and filled with a composite with aprotinin-fibrin glue on the right condyle and one with tranexamic acid-fibrin glue on the left condyle. The rabbits were randomized into two groups: 3 and 6 weeks of delay. Light microscopy, scanning electron microscopy and image analysis were performed.
Results: No adverse reactions were observed in either sample. Bony ingrowth associated with bioceramic resorption by osteoclastic TRAP-positive cells was noted. No significant difference was observed between the two composites. The bony ingrowth and ceramic resorption were qualitatively and quantitatively similar with both composites.
Conclusion: This study demonstrated that the choice of a natural (aprotinin) or synthetic (tranexamic acid) antifibrinolytic agent in the fibrin sealant associated with calcium phosphate granules and used as a bone substitute had no effect on the bioactivity of the composite. It remained efficient in bone reconstruction, no adverse effects were observed, and the bony ingrowth was qualitatively and quantitatively equivalent with the two types of fibrin sealant.