Purpose of review: A novel mechanism for the regulation of lipoprotein receptor activity is providing new insights into the control of lipid metabolism. The tissue-specific adaptors ARH (autosomal recessive hypercholesterolemia) and PDZK1 [where PDZ derives from postsynaptic density protein (PSD-95)/Drosophila discs-large (dlg)/tight-junction protein (ZO1)] have been shown to control the activities of distinct types of lipoprotein receptors in a posttranscriptional fashion, significantly affecting overall lipoprotein metabolism. This review will focus on one of these lipoprotein receptor-adaptor pairs, the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and its adaptor PDZK1.
Recent findings: The PDZ domain-containing adaptor protein PDZK1 has been shown to bind to and control the activity of the high-density lipoprotein receptor SR-BI via a tissue-specific posttranscriptional mechanism. Mice deficient in PDZK1 have elevated plasma cholesterol levels due to the virtually complete hepatic ablation of SR-BI, implicating PDZK1 as a novel regulator of high-density lipoprotein metabolism.
Summary: The functions of ARH and PDZK1 suggest that other adaptor proteins may be found to control the activities of other cell-surface receptors in a similar tissue-specific fashion. Manipulation of the expression and/or activities of such adaptors might provide new insights into receptor physiology and these adaptors may prove to be attractive targets for pharmaceutical intervention in cholesterol metabolism-related disease processes.