In vascular smooth muscle cells (VSMC), platelet-derived growth factor (PDGF) suppresses expression of multiple smooth muscle contractile proteins, useful markers of differentiation. Conversely, hypertrophic agents induce expression of these genes. The goal of this study was to employ genomic approaches to identify classes of genes differentially regulated by PDGF and hypertrophic stimuli. Changes in gene expression were determined using Affymetrix RAE-230 GeneChips in rat aortic VSMC stimulated with PDGF. For comparison with a model hypertrophic stimulus, a microarray was performed with VSMC stably expressing constitutively active Galpha(16), which strongly induces smooth muscle marker expression. We identified 75 genes whose expression was increased by exposure to PDGF and decreased by expression of Galpha(16) and 97 genes whose expression was decreased by PDGF and increased by Galpha(16). These genes included many smooth muscle-specific proteins; several extracellular matrix, cytoskeletal, and chemotaxis-related proteins; cell signaling molecules; and transcription factors. Changes in gene expression for many of these were confirmed by PCR or immunoblotting. The contribution of signaling pathways activated by PDGF to the gene expression profile was examined in VSMC stably expressing gain-of-function H-Ras or myristoylated Akt. Among the genes that were confirmed to be differentially regulated were CCAAT/enhancer-binding protein delta, versican, and nexilin. All of these genes also had altered expression in injured aortas, consistent with a role for PDGF in the response of injured VSMC. These data indicate that genes that are differentially regulated by PDGF and hypertrophic stimuli may represent families of genes and potentially be biomarkers for vascular injury.