Glutamate plays a role in the central regulation of the hypothalamic-pituitary-adrenal (HPA) and thyroid (HPT) axes. Until the recent discovery of vesicular glutamate transporters (VGLUT1-3), there was no specific tool for the examination of the putative morphological relationship between the glutamatergic and the hypophysiotropic systems. Using antisera against VGLUT2, corticotropin-releasing hormone (CRH), and prothyrotropin-releasing hormone (proTRH) (178-199), we performed double-labeling immunocytochemistry at light and electron microscopic levels in order to study the glutamatergic innervation of the CRH- and TRH-synthesizing neurons in the hypothalamic paraventricular nucleus (PVN). Fine VGLUT2-immunoreactive (IR) axons very densely innervated the parvocellular subdivisions of the PVN. VGLUT2-IR axons established juxtapositions with all parvocellular CRH- and TRH-synthesizing neurons. The innervation was similarly intense in all parvocellular subdivisions of the PVN. At ultrastructural level, VGLUT2-IR terminals frequently established synapses with perikarya and dendrites of the CRH- and proTRH-IR neurons. These findings demonstrate that glutamatergic neurons directly innervate hypophysiotropic CRH and TRH neurons in the PVN and, therefore, support the hypothesis that the glutamate-induced activation of the HPA and HPT axes may be accomplished by a direct action of glutamate on hypophysiotropic CRH and TRH systems.