An exact diagonalization study reveals that a matter-wave bright soliton and the Goldstone mode are simultaneously created in a quasi-one-dimensional attractive Bose-Einstein condensate by superpositions of quasidegenerate low-lying many-body states. Upon formation of the soliton the maximum eigenvalue of the single-particle density matrix increases dramatically, indicating that a fragmented condensate converts into a single condensate as a consequence of the breaking of translation symmetry.