The neuroprotective effect of the antiparkinsonian monoamine oxidase (MAO)-B inhibitor, R-(-)-deprenyl has been under investigation for years. Cytoskeleton, a main component of cell adhesion, is involved in the development of R-(-)-deprenyl-responsive diseases, the effect of the drug on cell adhesion, however, is not known. We examined the effect of R-(-)-deprenyl on cell-cell adhesion of neuronal and non-neuronal cells. R-(-)-deprenyl treatment resulted in a cell type- and concentration-dependent increase in cell-cell adhesion of PC12 and NIH3T3 cells at concentrations lower than those required for MAO-B inhibition, while S-(+)-deprenyl was not effective. This acitvity of R-(-)-deprenyl was not prevented by the cytochrome P-450 inhibitor, SKF525A, while deprenyl-N-oxide, a newly described metabolite, also induced an increase in cell-cell adhesion. The effect of R-(-)-deprenyl was not reversible during a 24-hour recovery period. In summary, we described a new, MAO-B independent effect of R-(-)-deprenyl on cell-cell adhesion which can contribute to its neuroprotective function.