Elastic fibers are composed of the protein elastin and a network of 10-12-nm microfibrils, which are composed of several glycoproteins, including fibrillin-1, fibrillin-2, and MAGP1/2 (microfibril-associated glycoproteins-1 and -2). Although fibrillins and MAGPs covalently associate, we find that the DSL (Delta/Serrate/LAG2) protein Jagged1, an activating ligand for Notch receptor signaling, also interacts with MAGP-2 in both yeast two-hybrid and coimmunoprecipitation studies. Interaction between Jagged1 and MAGP-2 requires the epidermal growth factor-like repeats of Jagged1. MAGP-2 was found complexed with the Jagged1 extracellular domain shed from 293T cells and COS-7 cells coexpressing full-length Jagged1 and MAGP-2. MAGP-2 shedding of the Jagged1 extracellular domain was decreased by the metalloproteinase hydroxamate inhibitor BB3103 implicating proteolysis in its release. Although MAGP-2 also interacted with the other DSL ligands, Jagged2 and Delta1, they were not found associated with MAGP-2 in the conditioned media, identifying differential effects of MAGP-2 on DSL ligand shedding. The related microfibrillar protein MAGP-1 was also found to interact with DSL ligands but, unlike MAGP-2, was unable to facilitate the shedding of Jagged1. Our findings suggest that in addition to its role in microfibrils, MAGP-2 may also affect cellular differentiation through modulating the Notch signaling pathway either by binding to cell surface DSL ligands or by facilitating release and/or stabilization of a soluble extracellular form of Jagged1.