Hemodialysis membranes have undergone a gradual but substantial evolution over the past few decades. Classification of modern dialyzer membranes by chemical composition bears little relationship to their functional characteristics. The fundamental properties that determine the capacity of the membrane to remove solutes and fluids are its surface area, thickness, pore size, pore density, and potential to adsorb proteins. Dialyzer membrane performance is characterized clinically by its efficiency, defined as the potential to remove urea and presented as the mass-transfer area coefficient (KoA) and ultrafiltration coefficient (K(uf) ),defined as the potential to remove water adjusted for the transmembrane pressure. The parameter K(uf) usually, but not invariably, correlates with the membrane permeability, defined as the potential to remove middle molecules, with beta2-microglobulin being the currently popular marker. The sieving coefficient reflects the membrane potential to transport solutes by convection and is particularly useful for hemofiltration. Enhancing solute clearance is accomplished clinically by increasing blood and dialysate flow rates, strategies that also are applicable to middle molecules for highly permeable membranes. Novel designs of dialyzers include the optimization of fluid flow path geometry and increasing the membrane pore selectivity for solutes by using nanotechnology.