Functional consequences of mutations in a putative Akt phosphorylation motif of B-raf in human cancers

Mol Carcinog. 2005 May;43(1):59-63. doi: 10.1002/mc.20102.

Abstract

Mutations in the B-raf gene have been reported in a number of human cancers, including melanoma and lung cancer. More than 80% of the reported B-raf mutations were V599E; however, non-V599E mutations have been frequently found in non-small cell lung cancers as compared with melanoma. Some non-V599E mutations have been found surrounding Thr439, which is thought likely to be one of the three Akt phosphorylation sites in the B-raf protein. However, as a previous report indicated that Thr439 was not phosphorylated by Akt, the functional consequences of these mutations have been unclear. Here, we examined the effects of cancer-related B-raf mutations surrounding Thr439 on the activation of the mitogen-activated protein/ extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (Erk) pathway and the transformation of NIH 3T3 fibroblasts. Among the three reported mutations (K438Q, K438T, and T439P) found in non-small cell lung carcinoma and melanoma, none elevated the activity of the MEK/Erk cascade as determined by in vitro kinase assays, immunoblots using antibody specific for phosphorylated Erk, or Elk1-dependent reporter assays. The inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling by LY294002 increased the Erk activation induced by the mutant B-raf proteins, as well as by wild-type B-raf. Furthermore, the B-raf mutants did not have increased NIH 3T3-transforming activities, as determined by colony-formation assays. These results suggest that the B-raf mutations surrounding Thr439 found in human cancers are unlikely to contribute to increased oncogenic properties of B-raf.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Animals
  • Cell Line
  • Humans
  • Mutation*
  • Neoplasms / metabolism*
  • Neoplasms / pathology
  • Phosphorylation
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins B-raf / chemistry
  • Proto-Oncogene Proteins B-raf / metabolism*
  • Proto-Oncogene Proteins c-akt

Substances

  • Proto-Oncogene Proteins
  • AKT1 protein, human
  • BRAF protein, human
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins B-raf
  • Proto-Oncogene Proteins c-akt