High performance n-type carbon nanotube field-effect transistors with chemically doped contacts

Nano Lett. 2005 Feb;5(2):345-8. doi: 10.1021/nl047931j.

Abstract

Short channel ( approximately 80 nm) n-type single-walled carbon nanotube (SWNT) field-effect transistors (FETs) with potassium (K) doped source and drain regions and high-kappa gate dielectrics (ALD HfO(2)) are obtained. For nanotubes with diameter approximately 1.6 nm and band gap approximately 0.55 eV, we obtain n-MOSFET-like devices exhibiting high on-currents due to chemically suppressed Schottky barriers at the contacts, subthreshold swing of 70 mV/decade, negligible ambipolar conduction, and high on/off ratios up to 10(6) at a bias voltage of 0.5 V. The results compare favorably with the state-of-the-art silicon n-MOSFETs and demonstrate the potential of SWNTs for future complementary electronics. The effects of doping level on the electrical characteristics of the nanotube devices are discussed.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization / methods*
  • Electric Conductivity
  • Electrodes*
  • Equipment Design
  • Equipment Failure Analysis
  • Nanotechnology / instrumentation*
  • Nanotechnology / methods
  • Nanotubes, Carbon / chemistry*
  • Nanotubes, Carbon / ultrastructure
  • Potassium / chemistry*
  • Transistors, Electronic*

Substances

  • Nanotubes, Carbon
  • Potassium