In vivo optical imaging is potentially useful for evaluating the presence of tumor markers that are targets of molecular medicine. Here we report the synthesis and characterization of integrin alphavbeta3-targeted peptide cyclo(Lys-Arg-Gly-Asp-Phe) [c(KRGDf )] labeled with fluorescence dyes with wavelength spanning from the visible/near infrared (Cy5.5) to the true near infrared (IRDye800) for optical imaging. In vitro, the peptide-dye conjugates bound specifically to tumor cells expressing alphavbeta3. When administered intravenously into mice at a dose of 6 nmol /mouse, the conjugates accumulated in tumors expressing alphavbeta3. The tumor-to-background ratios for human KS1767 Kaposi's sarcoma in mice injected with Cy5.5-c(KRGDf ) and Cy5.5 were 5.5 and 1.5, respectively. Preinjection of c(KRGDf ) blocked the uptake of Cy5.5-c(KRGDf ) in tumors by 89%. In alphavbeta3-positive M21 and alphavbeta3-negative M21-L human melanoma, fluorescence intensity in the tumor of mice injected with IRDye800 - c(KRGDf ) was 2.3 and 1.3 times that in normal tissue, respectively. Dynamic imaging revealed that Cy5.5- c(KRGDf ) was rapidly taken up by KS1767 tumor immediately after bolus injection. The rate of its uptake in the tumor was reduced by preinjection of c(KRGDf ) in an interval time-dependent manner. Our data suggest that near-infrared fluorescence imaging may be applied to the detection of tumors expressing integrin alphavbeta3 and to the assessment of the optimal biological dose and schedule of targeted therapies.