1 Artocarpol A (ART), a natural phenolic compound isolated from Artocarpus rigida, stimulated a slow onset and long-lasting superoxide anion generation in rat neutrophils, whereas only slightly activated the NADPH oxidase in a cell-free system. 2 Pretreatment of neutrophils with pertussis toxin (1 microg ml(-1)), 50 microM 2'-amino-3'-methoxyflavone (PD 98059), or 1 microM 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126) had no effect on ART-stimulated superoxide anion generation. ART (30 microM) did not induce extracellular signal-regulated kinase (ERK) phosphorylation. 3 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB 203580) markedly attenuated the ART-stimulated superoxide anion generation (IC50 value of 4.3+/-0.3 microM). Moreover, ART induced p38 mitogen-activated PK (MAPK) phosphorylation and activation. 4 The superoxide anion generation in response to ART was also substantially inhibited in a Ca2+-free medium, and by pretreatment with 1 microM 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U-73122) and 100 microM 2-aminoethyldiphenyl borate (2-APB). ART (30 microM) stimulated the [Ca2+]i elevation in the presence or absence of external Ca2+, and also increased the D-myo-inositol 1,4,5-trisphosphate formation. 5 2-[1-(3-Dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide (GF 109203X) greatly inhibited the ART-stimulated superoxide anion generation (IC50 value of 7.8+/-1.0 nM). ART increased the recruitment of PKC-alpha, -betaI, and -betaII to the plasma membrane of neutrophils, and stimulated Ca2+-dependent PKC activation in the cytosol preparation. 6 ART induced the phosphorylation of p47phox, which was attenuated by GF 109203X. Moreover, ART evoked the membrane association of p47(phox), which was inhibited by GF 109203X and SB 203580. 7 These results indicate that the ART stimulation of superoxide anion generation involved the activation of p38 MAPK, PLC/Ca2+, and PKC signaling pathways in rat neutrophils.