Invertebrate hemoglobins and nitric oxide: how heme pocket structure controls reactivity

J Inorg Biochem. 2005 Apr;99(4):903-11. doi: 10.1016/j.jinorgbio.2004.12.001.

Abstract

Hemoglobins (Hbs), generally defined as 5 or 6 coordinate heme proteins whose primary function is oxygen transport, are now recognized to occur in virtually all phyla of living organisms. Historically, study of their function focused on oxygen as a reversibly bound ligand of the ferrous form of the protein. Other diatomic ligands like carbon monoxide and nitric oxide were considered "non-physiological" but useful probes of structure-function relationships in Hbs. This investigatory landscape changed dramatically in the 1980s when nitric oxide was discovered to activate a heme protein, cyclic guanylate cyclase. Later, its activation was likened to Perutz' description of Hb's allosteric properties being triggered by a ligand-dependent "out-of-plane/into-plane" movement of the heme iron. In 1996, a functional role for nitric oxide in human and mammalian Hbs was demonstrated and since that time, the interest in NO as a physiologically relevant Hb ligand has greatly increased. Concomitantly, non-oxygen binding properties of Hbs have challenged the view that Hbs arose for their oxygen storage and transport properties. In this focused review we discuss some invertebrate Hbs' functionally significant reactions with nitric oxide and how strategic positioning of a few residues in the heme pocket plays an large role in the interplay of diatomic ligands to ferrous and ferric heme iron in these proteins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Allosteric Site
  • Animals
  • Binding Sites
  • Ferric Compounds / chemistry
  • Ferric Compounds / metabolism
  • Ferrous Compounds / chemistry
  • Ferrous Compounds / metabolism
  • Heme / chemistry*
  • Heme / metabolism
  • Hemoglobins / chemistry*
  • Hemoglobins / metabolism
  • Humans
  • Invertebrates
  • Ligands
  • Nitric Oxide / chemistry*
  • Nitric Oxide / metabolism
  • Oxygen / chemistry
  • Oxygen / metabolism
  • Protein Conformation
  • Structure-Activity Relationship

Substances

  • Ferric Compounds
  • Ferrous Compounds
  • Hemoglobins
  • Ligands
  • Nitric Oxide
  • Heme
  • Oxygen