This paper describes a mechanism for degradation of low-density lipoprotein (LDL) in fibroblasts unable to synthesize the LDL receptor. In this cell line, long-chain free fatty acids (FFA) activated 125I-LDL uptake; unsaturated FFA were the most efficient. The first step of this pathway was the binding of LDL apoB to a single class of sites on the plasma membrane and was reversible in the presence of greater than or equal to 10 mM suramin. Binding equilibrium was achieved after a 60-90-min incubation at 37 degrees C with 1 mM oleate; under these conditions, the apparent Kd for 125I-LDL binding was 12.3 micrograms/mL. Both cholesterol-rich (LDL and beta-VLDL) and triglyceride-rich (VLDL) lipoproteins, but not apoE-free HDL, efficiently competed with 125I-LDL for this FFA-induced binding site. After LDL bound to the cell surface, they were internalized and delivered to lysosomes; chloroquine inhibited subsequent proteolysis of LDL and thereby increased the cellular content of the particles. A physiological oleate to albumin molar ratio, i.e., 1:1 (25 microM oleate and 2 mg/mL albumin), was sufficient to significantly (p less than 0.01) activate all three steps of this alternate pathway: for example, 644 +/- 217 (25 microM oleate) versus 33 +/- 57 (no oleate) ng of LDL/mg of cell protein was degraded after incubation (2 h, 37 degrees C) with 50 micrograms/mL 125I-LDL. We speculate that this pathway could contribute to the clearance of both chylomicron remnants and LDL.