This study correlates the effects of propofol on cerebral blood flow (CBF) and middle cerebral artery blood flow velocity in dogs. CBF was measured using radioactive microspheres. Cerebral oxygen consumption (CMRO2) was measured with each CBF determination. Blood flow velocity was measured through a transtemporal window using a pulsed 8 MHz transcranial Doppler ultrasound system (TCD). Electroencephalogram (EEG) was continuously recorded over both cerebral hemispheres. Cardiac output (CO) was measured using an electromagnetic flow probe placed on the pulmonary artery. Baseline measures were made in all dogs (n = 11) with 0.7% isoflurane end tidal and 50% N2O in O2. There were two treatment groups. In group 1 (n = 6), propofol (0.8 mg/kg/min) was infused and a second measurement made at induction of EEG burst suppression (12 +/- 2 min). CBF and CMRO2 decreased by 70% and mean blood flow velocity decreased by 60%. Blood pressure, heart rate, and CO did not change. Propofol infusion was discontinued and all parameters were measured following recovery of EEG to baseline activity (48 +/- 9 min). CBF and blood flow velocity increased 35 and 25%, respectively, and CMRO2 increased by 32% during this period. A second propofol infusion (0.8 mg/kg/min) was started and all cerebral and systemic hemodynamic parameters were again determined at induction of EEG burst suppression (12 +/- 2 min). CBF decreased 35% and blood flow velocity decreased 25% to levels seen during the first propofol infusion. Over the entire study, changes in CBF correlated with changes in blood flow velocity (r = 0.86, p < 0.05). In group 2 (n = 5), four control measures were made at the same time intervals as in group 1. Baseline CBF and blood flow velocity were lower in group 2 compared to group 1 but these measures did not change over time. Our results show that propofol produces marked decreases in CBF in dogs and that these changes are closely correlated with CBF velocity.