[((t)BuNH)Te(mu-N(t)Bu)(2)Te(N(t))Bu)][OSO(2)CF(3)] (4a) is obtained in quantitative yields by the treatment of [((t)BuN)Te(mu-N(t)Bu)(2)Te(N(t)Bu)] (1) with HCF(3)SO(3). The reaction of 4a with LiI and iodine in the molar ratio 1:1:4.5 affords a product that, upon recrystallization from acetonitrile, was found to be a solid solution of [((t)BuNH)Te(mu-N(t)Bu)(2)Te(N(t)Bu)](2)I(20) (5a) and [((t)BuNH)Te(mu-N(t)Bu)(2)Te(NH(t)Bu)](2)I(18) (5b). Consequently, the crystal structure is disordered, containing 88.3(1)% of 5a.2MeCN and 11.7(1)% of 5b.2MeCN. The I(20) framework is involved in two symmetry-equivalent N-I-I-I-I fragments, two I(3)(-) ions, and three I(2) molecules that are linked together by I...I secondary bonding interactions. The bonding in the N-I-I-I-I fragment can be considered in terms of the lp(N) --> sigma*(I(2)) and pi(I(2)) --> sigma*(I(2)) charge-transfer interactions involving one [((t)BuNH)Te(mu-N(t)Bu)(2)Te(N(t)Bu)](+) cation and two I(2) units. The N-I bond length of 2.131(7) A, the I-I distances of 3.118(1), 3.095(2), and 2.788(2) A, and the angle I(2)-I(2) angle of 84.75(4) degrees are consistent with this bonding scheme. The I-I bond distances in the two symmetry-equivalent I(3)(-) ions are 3.113(1) and 2.792(2) A, and those in two crystallographically independent I(2) molecules are 2.736(2) and 2.743(1) A. The formal I(18)(4)(-) anion in 5b.2MeCN consists of four I(3)(-) anions and three I(2) molecules linked by I...I secondary bonds. One crystallographically independent I(3)(-) anion is connected to the [((t)BuNH)Te(mu-N(t)Bu)(2)Te(HN(t)Bu)](2+) cation by two hydrogen bonds [H...I = 2.823(5) and 2.983(5) A; N...I = 3.697(8) and 3.857(9) A]. The I(3)(-) anions and I(2) molecules in 5b show virtually identical bond parameters to those in 5a. The treatment of 1 with iodine and the reactions of its methylated derivatives, [((t)BuNMe)Te(mu-N(t)Bu)(2)Te(N(t)()Bu)][OSO(2)CF(3)] and [((t)BuNMe)Te(mu-N(t)Bu)(2)Te(MeN(t)Bu)][OSO(2)CF(3)](2), with LiI and iodine also afford highly moisture-sensitive polyiodides, either by the formation of N-I charge-transfer complexes or by ionic interactions. The crystal structures of the partially hydrolyzed products, [((t)BuIN)Te(mu-N(t))Bu)(2)Te(mu-O)](2)(I(3))(2) (3), [((t)BuMeN)Te(mu-N(t)Bu)(2)Te(mu-O)](2)(I(3))(2) (6), and 6.2MeCN, are also reported.