We studied the effects of an increase in the hydrophobicity of the transmembrane domain (TM) and cytoplasmic tail (CT) of influenza B virus hemagglutinin (BHA) on fusion activities. For this purpose, we created mutant HAs with novel acylation site(s) in the TM and/or CT. All mutants were able to induce hemifusion and to form fusion pores as well as could wild type (wt) BHA. However, the ability of these mutants to form syncytia was impaired, indicating that the increase in the hydrophobicity of these domains (especially the CT) affected fusion pore dilation.