We report an early investigation into genomic organization and chromosomal transmission in switchgrass based on restriction fragment length polymorphism (RFLP) markers. The segregation of 224 single dose restriction fragments (SDRF) in 85 full-sib progeny of a cross between the genotypes Alamo (AP13) and Summer (VS16) was used to determine linkage associations in each parent. In the seed parent AP13, 11 cosegregation groups were identified by 45 SDRF markers with a cumulative recombination length of 412.4 cM. In the pollen parent VS16, 57 SDRF markers were assigned to 16 cosegregation groups covering a length of 466.5 cM. SDRF markers identified by the same probes and mapping to different cosegregation groups were used to combine the two maps and identify homology groups. Eight homology groups were identified among the nine haploid linkage groups expected in switchgrass. The high incidence of repulsion phase associations indicates that preferential pairing between homologous chromosomes is predominant in switchgrass. Based on marker distribution in the paternal map (VS16), we estimated the recombinational length of switchgrass genome to be 4,617 cM. In order to link 95% of the genome to a marker at a 15-cM distance, a minimum of 459 markers will be required. Using information from the ratio of repulsion to coupling linkages, we infer that switchgrass is an autotetraploid with a high degree of preferential pairing. The information presented in this study establishes a foundation for extending genetic mapping in this crop and constitutes a framework for basic and applied genetic studies.