Objectives: The aim of this study was to assess whether Frank-Starling mechanism has an independent effect on left ventricular (LV) performance in atrial fibrillation (AF).
Background: Ventricular performance in AF depends on variable contractility through the interval-force mechanism based on the ratio of preceding and pre-preceding RR intervals (RR(p)/RR(pp)). The impact of end-diastolic volume (EDV) variability, through the Frank-Starling mechanism, is not well understood.
Methods: We induced AF in 16 open chest dogs. RR intervals, LV pressure, LV volume, and aortic flow were collected for >400 beats during rapid AF (ventricular cycle length 292 +/- 66 ms). In six of the dogs, additional data were collected while average ventricular cycle length was prolonged from 258 +/- 34 ms to 445 +/- 80 ms by selective vagal nerve stimulation of the AV node.
Results: The relations of maximal LV power (LVPower) and peak LV pressure derivative (dP/dt) versus RR(p)/RR(pp) were fitted to the equation y = A * (1 - EXP (RR(p)/RR(pp)min - RR(p)/RR(pp))/C) and the residuals (RES) of these relations were analyzed. LVPower and dP/dt strongly correlated with RR(p)/RR(pp) (r(2) = 0.67 +/- 0.12 and 0.66 +/- 0.12, P < .0001 for all correlations). Importantly, RES-LVPower and RES-dP/dt showed linear correlation with EDV (r(2) = 0.20 +/- 0.14 and r(2) = 0.24 +/- 0.17, P < .01 for all correlations). In the six dogs with slowed average ventricular rate, the slope of both residual relationships (RES-LVPower vs EDV and RES- dP/dt vs EDV) decreased (P < .03 for both).
Conclusions: The Frank-Starling mechanism contributes to ventricular performance in AF independently of the interval-force effects of the beat-to-beat variability in cardiac contractility. The Frank-Starling mechanism is sensitive to the average ventricular rate.