Cells infected with a recombinant vaccinia virus carrying the gag and pol regions of the human immunodeficiency virus type 1 genome (Vac-gag/pol) released human immunodeficiency virus (HIV)-like particles containing HIV-specific RNA. However, cells infected with another recombinant vaccinia, Vac-gag/pol-dP, derived through the deletion of an 85-base region (nucleotide positions 679-763) of the HIV genome between the primer binding site and the gag initiation codon of Vac-gag/pol, produced HIV-like particles devoid of the HIV-specific RNA. This 85-base deletion was suggested to cause the collapse of a stable stem-loop structure of 46 bases (751-796) around the gag initiation codon. To examine the role of the stem-loop structure in the packaging of RNAs, we constructed a vaccinia vector plasmid that carried this 46-base sequence followed by the Sendai virus nucleocapsid (NP) gene. When both Vac-gag/pol-dP and this plasmid were introduced into cells, HIV-like particles released from the cells contained the NP gene RNA. However, another vaccinia vector plasmid, which carried the 46-base sequence in the midst of the NP gene, could not supply RNA for incorporation into HIV-like particles. Computer analysis of this plasmid sequence suggested that the 46-base sequence cannot form the stem-loop structure. These findings suggest that the stem-loop structure formed by the 46-base sequence is crucial as a packaging signal.