3-Nitrobenzanthrone (3-NBA) is an environmental pollutant and suspected human carcinogen found in emissions from diesel and gasoline engines and on the surface of ambient air particulate matter; human exposure to 3-NBA is likely to occur primarily via the respiratory tract. In our study female Sprague Dawley rats were treated by intratracheal instillation with a single dose of 0.2 or 2 mg/kg body weight of 3-NBA. Using the butanol enrichment version of the (32)P-postlabeling method, DNA adduct formation by 3-NBA 48 hr after intratracheal administration in different organs (lung, pancreas, kidney, urinary bladder, heart, small intestine and liver) and in blood was investigated. The same adduct pattern consisting of up to 5 DNA adduct spots was detected by thin layer chromatography in all tissues and blood and at both doses. Highest total adduct levels were found in lung and pancreas (350 +/- 139 and 620 +/- 370 adducts per 10(8) nucleotides for the high dose and 39 +/- 18 and 55 +/- 34 adducts per 10(8) nucleotides for the low dose, respectively) followed by kidney, urinary bladder, heart, small intestine and liver. Adduct levels were dose-dependent in all organs (approximately 10-fold difference between doses). It was demonstrated by high performance liquid chromatography (HPLC) that all 5 3-NBA-derived DNA adducts formed in rats after intratracheal instillation are identical to those formed by other routes of application and are, as previously shown, formed from reductive metabolites bound to purine bases. Although total adduct levels in the blood were much lower (41 +/- 27 and 9.5 +/- 1.9 adducts per 10(8) nucleotides for the high and low dose, respectively) than those found in the lung, they were related to dose and to the levels found in lung. These results show that uptake of 3-NBA by the lung induces high levels of specific DNA adducts in several organs of the rat and an identical adduct pattern in DNA from blood. Therefore, 3-NBA-DNA adducts present in the blood are useful biomarkers for exposure to 3-NBA and may help to assess the effective biological dose in humans exposed to it.