Among several adaptive explanations proposed to account for variation in avian egg color, that related to sexual selection is of particular interest because of its possible generality. Briefly, it proposes that because biliverdin (the pigment responsible for blue-green eggshell coloration) is an antioxidant, deposition in the eggshell by laying females may signal the capacity of females to control free radicals, despite the handicap of removing this antioxidant from their body. If males adjust parental effort in response to the intensity of the blue coloration of eggs, thereby investing more in the offspring of high-quality mates, blue eggs may represent a postmating sexually selected signal in females. Here, by image and spectrophotometric analyses of the eggs of European passerines, we tested two different predictions of the hypothesis. First, variables related to intraspecific variation in parental effort (i.e., the duration of the nestling period controlled for body mass) should be positively related to the intensity of blue-green color of the eggshell across species. Second, there should be a positive relationship between intensity of blue-green color of eggs and degree of polygyny. These predictions were supported: intensity of blue-green coloration (i.e., chroma) was significantly related to the duration of the nestling period and to degree of polygyny after controlling for possible confounding variables (i.e., body mass, incubation period, and nest type) and similarity due to common descent. Nest type (hole or nonhole) also explained a significant proportion of variation in egg chroma, perhaps reflecting different selection pressures (i.e., light conditions, risk of parasitism) affecting species with the two types of nests.