The purpose of this study was to assess clinical 1H MR spectroscopy (MRS) as a noninvasive method for evaluating brain tumor malignancy at 3T high-field system. Using 3T MRI/MRS system, localized water-suppressed single-voxel technique in patients with brain tumor (i.e., gliomas) was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantitated as a relative ratio. The variation of metabolite measurements of the designated region in 10 normal volunteers was less than 10%. Normal ranges of NAA/Cr and Cho/Cr ratios were 1.67+/-018 and 1.16+/-0.15, respectively. NAA/Cr ratio of gliomas was significantly lower than that of the normal tissues (P= .005), but Cho/Cr ratio of gliomas was significantly higher (P= .001). Cho/Cr ratio of high-grade gliomas was significantly higher than that of low-grade gliomas. The present study demonstrated that the neuronal degradation or loss was observed in all gliomas. Higher-grade glioma was correlated with higher Cho/Cr ratio, indicating a significant dependence of Cho levels on malignancy of gliomas. Our results suggest that clinical 1H MR spectroscopy could be useful to predict tumor malignancy.