Pre-pulse inhibition (PPI) is a phenomenon of neurobehavioral plasticity in which the motor response to a startling stimulus is inhibited by a preceding stimulus of a lower intensity. Most often this is tested in the auditory mode. PPI is impaired in a variety of clinical states, most notably schizophrenia. PPI is easily modeled in experimental animals and serves as a useful basis for determining the neural bases for behavioral plasticity. In the current study we examined the interactions of N-methyl-D-aspartate (NMDA) glutamate and nicotinic cholinergic receptor systems in the expression of PPI. Female Sprague-Dawley rats were tested for auditory PPI after s.c. injections of the NMDA antagonist dizocilpine (also known as MK-801), the prototypic nicotinic agonist nicotine or both. Vehicle (saline) injections served as the control. Nicotine (0.2-0.8 mg/kg) by itself caused a modest but significant dose-related improvement in PPI. Dizocilpine (25-100 microg/kg) caused a dramatic dose-related impairment in PPI. Interestingly, the low to moderate doses of nicotine potentiated the PPI impairment by dizocilpine. In a second experiment nicotine and dizocilpine interactions with the atypical antipsychotic drug clozapine were assessed. As in the first experiment, nicotine potentiated the adverse effects of dizocilpine on PPI. The combination of nicotine with clozapine effectively attenuated the PPI impairment caused by dizocilpine when neither alone was effective. Inasmuch as PPI is impaired in schizophrenia, its reversal by the antipsychotic drug clozapine may depend on co-administration of nicotine by smoking in the patients. Development of nicotinic-based co-treatments for schizophrenia may achieve this benefit of nicotine without the hazards of smoking. Sensory modulation deficit, which is a syndrome of sensory over-responsiveness may also benefit from such combination therapy.