Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate

Proc Natl Acad Sci U S A. 2005 May 17;102(20):7091-6. doi: 10.1073/pnas.0501266102. Epub 2005 May 3.

Abstract

Several lines of investigation suggest that the nondegradable fluorophores that accumulate as lipofuscin in retinal pigment epithelium (RPE) cells contribute to the etiology of macular degeneration. Despite evidence that much of this fluorescent material may originate as inadvertent products of the retinoid cycle, the enzymatic pathway by which the 11-cis-retinal chromophore of rhodopsin is generated, the only fluorophores of the RPE to be characterized as yet have been A2E and its isomers. Here, we report the isolation and structural characterization of an additional RPE lipofuscin fluorophore that originates as a condensation product of two molecules of all-trans-retinal (ATR) dimer and forms a protonated Schiff base conjugate with phosphatidylethanolamine (PE), the latter conjugate (ATR dimer-PE) having UV-visible absorbance maxima at 285 and 506 nm. ATR dimer was found to form natively in bleached rod outer segments in vitro and when rod outer segments were incubated with ATR. HPLC analysis of eye-cups that included RPE and isolated neural retina from Abcr-/- mice and RPE isolated from human donor eyes revealed the presence of a pigment with the same UV-visible absorbance and retention time as synthetic ATR dimer-PE conjugate. Evidence that ATR dimer undergoes a photooxidation process involving the addition of oxygens at double bonds as well as an aromatic demethylation also may indicate a role for this molecule, or its derivatives, in the photoreactivity of RPE lipofuscin.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid
  • Dimerization
  • Humans
  • Lipofuscin / biosynthesis
  • Lipofuscin / chemistry*
  • Lipofuscin / isolation & purification*
  • Magnetic Resonance Spectroscopy
  • Mice
  • Mice, Knockout
  • Multiprotein Complexes / metabolism*
  • Oxygen / metabolism
  • Phosphatidylethanolamines / metabolism
  • Pigment Epithelium of Eye / metabolism*
  • Retinal Rod Photoreceptor Cells / metabolism*
  • Schiff Bases / metabolism
  • Vitamin A / metabolism

Substances

  • Lipofuscin
  • Multiprotein Complexes
  • Phosphatidylethanolamines
  • Schiff Bases
  • Vitamin A
  • phosphatidylethanolamine
  • Oxygen