Parasites play a prominent role in the ecology, evolution, and more recently, conservation of many organisms. For example, emerging infectious diseases, including a group of lethal ranaviruses, are associated with the declines and extinctions of amphibians around the world. An increasingly important basic and applied question is: what controls parasite virulence? We used a dose-response experiment with three laboratory-bred clutches of tiger salamander larvae (Ambystoma tigrinum) to test how the size of inoculum and host genetic factors influence the dynamics and outcome of ranavirus infections. We found that infection rates increased with dose and were strongly affected by clutch identity and host life history stage. Case mortality increased with dose of inoculum, but was unaffected by host characteristics. Average survival time decreased with dose and differed among clutches, but this was largely due to differences in the time to onset of symptoms. Overall, our results suggest that dose of inoculum and host characteristics (life history stage and genetic background) influence the establishment and early virus replication, and therefore the virulence of ranavirus infections.