Analysis of spatial correlation between 99mTc-Sestamibi uptake and radiographic breast density

Technol Cancer Res Treat. 2005 Jun;4(3):265-73. doi: 10.1177/153303460500400306.

Abstract

Breast scintigraphy is a technique by which the biological properties of breast lesions can be assessed using an injected radiopharmaceutical. It may be particularly useful for women with radiographically dense breasts, in whose mammograms, lesions are often obscured by breast tissue. We are evaluating a dual modality breast scanner developed at the University of Virginia for its ability to distinguish between benign and malignant lesions. The scanner obtains a digital mammogram and a gamma ray emission image in quick succession with the breast held under mild compression, resulting in a fused image in which structures in the digital mammogram can be directly correlated with those in the scintigram. Our experience has shown that radiopharmaceutical uptake by normal breast tissue can sometimes obscure uptake by small lesions. It would therefore be advantageous to correct for this background uptake if possible. One potential way of accomplishing this is to use the information from the digital mammogram to help predict the background radiopharmaceutical distribution. With this in mind, we retrospectively investigated the degree of spatial correlation between the distribution of background activity and the distribution of radiodense breast tissue in normal breasts. Using a histogram-based analysis, we have quantified the degree of correlation in 16 images obtained from a total of 8 patients. We also used the mammographic images to quantify the radiographic density of each breast. Our results suggest that spatial correlation between areas of high radiopharmaceutical uptake and parenchymal density exists in the most dense regions of the breast for either extremely dense or heterogeneously dense breasts. High correlation was also observed for some homogeneously fatty breasts. In the latter case however, variation in breast thickness appeared to be the cause of the increased correlation. Correlation properties are approximately equal in both right and left breasts for a particular patient, except in cases exhibiting focal radiotracer uptake in a lesion. Although our preliminary results suggest that correlation between radiopharmaceutical uptake and parenchymal density exists, the number of cases thus far is too small for definitive conclusions. In addition, the planar nature of the dual modality scans imposes an inherent limitation on our ability to take into account attenuation of the emitted gamma radiation, which thus constitutes an uncontrolled variable in the correlation analysis. In principle, this problem can be eliminated by 3-dimensional imaging.

MeSH terms

  • Adipose Tissue / diagnostic imaging*
  • Breast Diseases / diagnostic imaging*
  • Diagnosis, Differential
  • Female
  • Humans
  • Predictive Value of Tests
  • Radiography
  • Radionuclide Imaging
  • Radiopharmaceuticals*
  • Retrospective Studies
  • Sensitivity and Specificity
  • Technetium Tc 99m Sestamibi*

Substances

  • Radiopharmaceuticals
  • Technetium Tc 99m Sestamibi