Background: Previous work has shown that co-incubation of human sperm with Chlamydia trachomatis serovars E and LGV leads to premature sperm death and that this is due primarily to chlamydial lipopolysaccharide (LPS). Here, we investigated the possible involvement of apoptosis in this premature sperm death.
Methods: Highly motile preparations of sperm from normozoospermic patients were co-incubated for 6 h with extracted LPS from C. trachomatis serovars E and LGV. Three different methods were used to determine if LPS-treated sperm underwent apoptosis, including: (i) flow cytometry; (ii) measurement of ADP:ATP ratios; and (iii) measurement of mono- and oligonucleosomal DNA fragments. Caspase activity was also investigated by fluorimetry and by use of a pan-caspase inhibitor and caspase-3 inhibitor.
Results: All three methods used for detection indicated that C. trachomatis LPS induced some apoptosis in sperm after 6 h when compared with a staurosporine (apoptosis-positive) control. Moreover, a greater degree of apoptosis was seen with C. trachomatis serovar E than with serovar LGV. It was also shown that C. trachomatis LPS-induced apoptosis of sperm could be blocked with a pan-caspase inhibitor and a caspase-3 inhibitor. Moreover, by using a fluorogenic substrate, apoptosis was shown to be caspase-mediated.
Conclusions: In general it is believed that apoptosis does not occur in C. trachomatis-infected host cells. However, using three different methods, our findings clearly indicate that co-incubation of sperm with C. trachomatis LPS results in cellular death which is in part due to apoptosis and is caspase-mediated. These findings provide an explanation as to how C. trachomatis can mediate premature death in human sperm.