Nerve-mast cell interaction is involved in both homeostatic and pathologic regulations. The molecules that sustain this association have not been identified. Because synaptic cell adhesion molecule (SynCAM), alternatively named spermatogenic Ig superfamily (SgIGSF), is expressed on both nerves and mast cells and because it binds homophilically, this molecule may be a candidate. To examine this possibility, mast cells with or without SgIGSF/SynCAM were cocultured with superior cervical ganglion neurons that express SgIGSF/SynCAM, and the number of mast cells attached to neurites was counted. The attachment of mast cells with SgIGSF/SynCAM, i.e., bone marrow-derived mast cells (BMMC) from wild-type mice, was inhibited dose-dependently by blocking Ab to SgIGSF/SynCAM. Mast cells without SgIGSF/SynCAM, i.e., BMMC from microphthalmia transcription factor-deficient mice and BMMC-derived cell line IC-2 cells, were defective in attachment to neurite, and transfection with SgIGSF/SynCAM normalized this. When the nerves were specifically activated by scorpion venom, one-quarter of the attached IC-2 cells mobilized Ca(2+) after a few dozen seconds, and ectopic SgIGSF/SynCAM doubled this proportion. At points of contact between neurites and wild-type BMMC, SgIGSF/SynCAM was locally concentrated in both neurites and BMMC. SgIGSF/SynCAM on mast cells appeared to predominantly mediate attachment and promote communication with nerves.