During biosynthesis of the anthracycline antitumor agents daunomycin, adriamycin, and aclacinomycin, the polyketide-derived tetracyclic aglycone is enzymatically glycosylated at the C7-OH by dedicated glycosyltransferases (Gtfs) that transfer L-2,3,6-trideoxy-3-aminohexoses. In aclacinomycins, the first deoxyhexose is predicted to be transferred via AknS action, then subjected to further elongation to a trisaccharide by the subsequent Gtf, AknK. We report here that purified AknS has very low activity in the absence of the adjacently encoded AknT; however, at a 3:1 ratio, AknT stimulates AknS k(cat) by 40-fold up to 0.22 min(-1) for transfer of L-2-deoxyfucose (2-dF) to the aglycone aklavinone. It is likely that several other Gtfs that glycosylate polyketide aglycones also act as two-component catalytic systems. Incubations of purified AknS/AknT/AknK with two aglycones and two dTDP-2-deoxyhexoses produced previously uncharacterized anthracycline disaccharides.