Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability

Circ Res. 2005 Jun 24;96(12):1257-65. doi: 10.1161/01.RES.0000171756.13554.49. Epub 2005 May 26.

Abstract

Neuropilin-1 (Npn-1) is a cell surface receptor that binds vascular endothelial growth factor (VEGF), a potent mediator of endothelial permeability, chemotaxis, and proliferation. In vitro, Npn-1 can complex with VEGF receptor-2 (VEGFR2) to enhance VEGFR2-mediated endothelial cell chemotaxis and proliferation. To determine the role of Npn-1/VEGFR2 complexes in VEGF-induced endothelial barrier dysfunction, endothelial cells were stably transfected with Npn1 or VEGFR2 alone (PAE/Npn and PAE/KDR, respectively), or VEGFR2 and Npn-1 (PAE/KDR/Npn-1). Permeability, estimated by measurement of transendothelial electrical resistance (TER), of PAE/Npn and PAE/KDR cell lines was not altered by VEGF165. In contrast, TER of PAE/KDR/Npn-1 cells decreased in dose-dependent fashion following VEGF165 (10 to 200 ng/mL). Activation of VEGFR2, and 2 downstream signaling intermediates (p38 and ERK1/2 MAPK) involved in VEGF-mediated permeability, also increased in PAE/KDR/Npn-1. Consistent with these data, inhibition of Npn-1, but not VEGFR2, attenuated VEGF165-mediated permeability of human pulmonary artery endothelial cells (HPAE), and VEGF121 (which cannot ligate Npn-1) did not alter TER of HPAE. Npn-1 inhibition also attenuated both VEGF165-mediated pulmonary vascular leak and activation of VEGFR2, p38, and ERK1/2 MAPK, in inducible lung-specific VEGF transgenic mice. These data support a critical role for Npn-1 in regulating endothelial barrier dysfunction in response to VEGF and suggest that activation of distinct receptor complexes may determine specificity of cellular response to VEGF.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Capillary Permeability*
  • Cells, Cultured
  • Endothelial Cells / metabolism*
  • Humans
  • Lung / blood supply
  • Lung / metabolism
  • Mice
  • Mitogen-Activated Protein Kinase 1 / physiology
  • Mitogen-Activated Protein Kinase 3 / physiology
  • Neuropilin-1 / physiology*
  • Respiratory Distress Syndrome / etiology
  • Swine
  • Vascular Endothelial Growth Factor A / physiology*
  • Vascular Endothelial Growth Factor Receptor-2 / physiology
  • p38 Mitogen-Activated Protein Kinases / physiology

Substances

  • Vascular Endothelial Growth Factor A
  • Neuropilin-1
  • Vascular Endothelial Growth Factor Receptor-2
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • p38 Mitogen-Activated Protein Kinases