EphB4 expression and biological significance in prostate cancer

Cancer Res. 2005 Jun 1;65(11):4623-32. doi: 10.1158/0008-5472.CAN-04-2667.

Abstract

Prostate cancer is the most common cancer in men. Advanced prostate cancer spreading beyond the gland is incurable. Identifying factors that regulate the spread of tumor into the regional nodes and distant sites would guide the development of novel diagnostic, prognostic, and therapeutic targets. The aim of our study was to examine the expression and biological role of EphB4 in prostate cancer. EphB4 mRNA is expressed in 64 of 72 (89%) prostate tumor tissues assessed. EphB4 protein expression is found in the majority (41 of 62, 66%) of tumors, and 3 of 20 (15%) normal prostate tissues. Little or no expression was observed in benign prostate epithelial cell line, but EphB4 was expressed in all prostate cancer cell lines to varying degrees. EphB4 protein levels are high in the PC3 prostate cancer cell line and several folds higher in a metastatic clone of PC3 (PC3M) where overexpression was accompanied by EphB4 gene amplification. EphB4 expression is induced by loss of PTEN, p53, and induced by epidermal growth factor/epidermal growth factor receptor and insulin-like growth factor-I/insulin-like growth factor-IR. Knockdown of the EphB4 protein using EphB4 short interfering RNA or antisense oligodeoxynucleotide significantly inhibits cell growth/viability, migration, and invasion, and induces apoptosis in prostate cancer cell lines. Antisense oligodeoxynucleotide targeting EphB4 in vivo showed antitumor activity in murine human tumor xenograft model. These data show a role for EphB4 in prostate cancer and provide a rationale to study EphB4 for diagnostic, prognostic, and therapeutic applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Cycle / genetics
  • Cell Line, Tumor
  • Cell Movement / physiology
  • Cell Survival / physiology
  • Gene Expression Regulation, Neoplastic
  • Genes, Tumor Suppressor
  • Humans
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplasm Invasiveness
  • Oligonucleotides, Antisense / genetics
  • Oligonucleotides, Antisense / pharmacology
  • Prostatic Neoplasms / enzymology*
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / pathology
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics
  • RNA, Small Interfering / genetics
  • Receptor, EphB4 / biosynthesis*
  • Receptor, EphB4 / genetics
  • Xenograft Model Antitumor Assays

Substances

  • Oligonucleotides, Antisense
  • RNA, Messenger
  • RNA, Small Interfering
  • Receptor, EphB4