Considerable attention has recently been paid to the application of chemokines to cancer immunotherapy because of their chemotactic affinity for a variety of immune cells and because several chemokines are strongly angiostatic. In the present study, the recombinant adenovirus vectors encoding chemokine CCL19 or XCL1 in an E1 cassette (AdRGD-mCCL19 and AdRGD-mXCL1) were developed. The constructed fiber-mutant adenovirus vector, which contained the integrin-targeting Arg-Gly-Asp (RGD) sequence in the fiber knob, notably enhanced the transfection efficiency to OV-HM ovarian carcinoma cells compared to that induced by conventional adenovirus vector. The results of an in vitro chemotaxis assay for chemokine-encoding vector demonstrated that both AdRGD-mCCL19 and AdRGD-mXCL1 could induce the migration of cells expressing specific chemokine receptors. Of the two chemokine-encoding vectors evaluated in vivo, AdRGD-mCCL19 showed significant tumor-suppressive activity in B6C3F1 mice via transduction into OV-HM cells, whereas XCL1 did not exhibit any notable anti-tumor effects, suggesting that CCL19 may be a candidate for cancer immunotherapy.